عنوان انگلیسی مقاله: Mining association rules for the quality improvement of the production process
عنوان فارسی مقاله: استخراج قوانین وابستگی برای بهبود کیفیت فرایند تولید
دسته: مدیریت و
اقتصادفرمت فایل ترجمه شده: فایل Word ورد 2007 یا 2003 (Docx یا Doc) قابل ویرایش
تعداد صفحات فایل ترجمه شده: 25
_______________________________________
چکیدهافراد تحصیل کرده و شاغل معمولاً علاقه دارند توسعه روش ها و برنامه های
کامپیوتری را که با کارهای مهندسی و دانش سر و کار دارند دنبال کنند. مدیریت اشتباه عملیات و زمان های تولید از دست رفته، مشکلات و مسائل بزرگی هستند که بهره وری و کیفیت سیستم های صنعتی و هزینه تولید را تحت تأثیر قرار می دهد. استخراج قوانین وابستگی، یک تکنیک داده کاوی است که برای پیدا کردن اطلاعات مفید و ارزشمند از پایگاه های داده بزرگ استفاده می شود. این مقاله، پایه مفهومی بهتری را برای توسعه برنامه های استخراج قوانین وابستگی ارائه می دهد تا دانش را از عملیات و مدیریت اطلاعات به راحتی استخراج کند. تأکید این مقاله روی بهبود فرایندهای عملیاتی است. یک مثال کاربردی، تجربه صنعتی که استخراج قوانین وابستگی در آن برای تحلیل فرایند تولید استفاده می شود را شرح می دهد. این مقاله برخی نتایج جدید و جالب در رابطه با تکنیک های داده کاوی و کشف دانش که روی فرایند تولید نقش دارد را گزارش می دهد. نتایج تجربی روی داده هایی که در زندگی واقعی نقش دارند نشان می دهد که روش پیشنهادی برای یافتن دانش مرتبط با عملیات نادرست مفید واقع می شود.
مقدمهکاربردهای مهندسی هوش مصنوعی نظرات محققین و شاغلین حوزه صنعت را به دلیل توانایی آن در یادگیری و درک اصول و حقایق به منظور کسب دانش و به کارگیری آن در عمل به خود جلب کرده است. پیشرفت های مداوم، اشاره به پیشرفت های رو به جلو و غیر منتظره در زمینه عملکرد سازمانی دارد (Linderman, Schroeder, Zaheer, Liedtke, & Choo, 2004). پیشرفت در مسائلی مانند افزایش ارزش مشتری، کاهش خطاها و عیوب، بهره وری بهبود یافته، امنیت عملکرد چرخه زمانی و انگیزش (Evans & Lindsay, 2001). این مورد معمولاً در روش حل تدریجی مسئله رخ می دهد که شامل مراحل ضمنی سازی مسئله، تحلیل مسئله، تعمیم راه حل و یادگیری دروس است (Kamsu-Foguem, Coudert, Geneste, & Beler, 2008). روش حل مسئله، روی توصیف فرایند شناختی در کارهای عقلانی و ملاحظات شناختی که با سرمایه گذاری دانش روی ساختارهای خاص و قدرت بخشی به تعمیم سر و کار دارد تمرکز می کند (Patel, Arocha, &Kaufman, 2001). روش های حل مسئله نقش مهمی را در اکتساب دانش و مهندسی بازی می کند زیرا سطح دانش انتزاعی برای نیل به اهداف با اعمال دانش توسط فرایند تدریجی جستجوی مسیر راه حل بسیار ارزشمند است. از این روش ها می توان برای توصیف فرایند استدلال به صورت ساختاری برای هدایت روند کسب دانش و راحت کردن تقسیم دانش و استفاده مجدد بهره جست (Benjamins & Fensel, 1998).