مقاله از تمام رشته های دانشگاهی

به اضافه مقالات تخصصی انگلیسی ایندکس شده در ISI

مقاله از تمام رشته های دانشگاهی

به اضافه مقالات تخصصی انگلیسی ایندکس شده در ISI

تشخیص خشونت ویدئو با استفاده از تحلیل خصوصیات آرام (ترجمه مقاله فناوری اطلاعات)

عنوان انگلیسی مقاله: Violence Video Detection by Discriminative Slow Feature Analysis
عنوان فارسی مقاله: تشخیص خشونت ویدئو با استفاده از تحلیل خصوصیات آرام
دسته: روانشناسی، فناوری اطلاعات و کامپیوتر
فرمت فایل ترجمه شده: فایل Word ورد 2007 یا 2003 (Docx یا Doc) قابل ویرایش
تعداد صفحات فایل ترجمه شده: 9
_______________________________________
چکیده
امروزه اینترنت، اشتراک گذاری انواع اطلاعات را برای همگان آسان کرده است. با این حال، محتوای خشن در وب تأثیر زیان آوری روی کسانی که قدرت قضاوت درست را ندارند مخصوصاً نوجوانان می گذارد. این مقاله، روشی را برای تشخیص خشونت در ویدئو ارائه می کند، این روش تحلیل ویژگی آرام تبعیضانه (D-SFA) را معرفی می کند تا یادگیری توابع ویژگی آرام از انبوه صحنه ها در ویدئو انجام گیرد. پس از آن با توابع ویژگی آرام یادگیری شده، ویژگی های بدست آمده انباشته مربعی شکل (ASD) برای ارائه ویدئو استخراج می شوند. در نهایت، یک ماشین برداری پشتیبان خطی (SVM) برای طبقه بندی آموزش می بیند. ما همچنین یک دیتاست ویدئوی خشن (VV) با 200 نمونه خشونت آمیز و 200 نمونه بدون خشونت جمع آوری شده از اینترنت و فیلم ها ساخته ایم. نتایج تجربی روی دیتاست جدید، کارایی روش پیشنهادی را نشان می دهد.

مقدمه
با رشد سریع وبسایت های شبکه اجتماعی مثل فیس بوک، توئیتر و یوتیوب، ویدئوهای زیادی هر روز آپلود می شود. همانطور که ما از اطلاعات مفید این سایت ها لذت می بریم، برخی ویدئوهای حاوی خشونت نیز توسط کاربران قابل دسترسی هستند. در افرادی که قدرت قضاوت صحیح ندارند مثل کودکان و نوجوانانی که در معرض این محتوا هستند ممکن است منجر به رفتارهای خشونت آمیز شود یا حتی آثار جرم در آن ها با تقلید از آنچه در این فیلم ها دیده اند آشکار شود. بنابراین واضح است که نیاز به محافظت از چنین گروه های حساس جامعه با استفاده از تشخیص دهنده های اتوماتیک، کارا و مؤثر امری ضروری است. با وجود اینکه تشخیص خشونت موضوع داغی در بینایی کامپیوتر نیست اما امری بسیار مهم است. برخی روش ها تاکنون برای حل این مسئله پیشنهاد شده است. در [1] نویسندگان از هشت ویژگی رادیویی در زمینه زمان و فرکانس به عنوان ورودی دسته بندی کننده باینری استفاده کرده اند که محتوای ویدئو را با توجه به میزان خشونت در آن اندازه شناسایی می کند. سپس آن ها کار خود را با استفاده از شبکه های بیزین به مسئله طبقه بندی چند کلاسه تعمیم داده اند. 
ادامه مطلب ...