مقاله از تمام رشته های دانشگاهی

به اضافه مقالات تخصصی انگلیسی ایندکس شده در ISI

مقاله از تمام رشته های دانشگاهی

به اضافه مقالات تخصصی انگلیسی ایندکس شده در ISI

بررسی و مطالعه کامل داده کاوی با (SQL server 2005) پیاده سازی آن روی بانک اطلاعاتی

پایان نامه دوره کارشناسی کامپیوتر: گرایش نرم افزار

چکیده
فصل اول: مقدمه ای بر داده کاوی
1-1-مقدمه
1-2-عامل مسبب پیدایش داده کاوی
1-3-داده کاوی و مفهوم اکتشاف دانش (KDD)
1-3-1-تعریف داده کاوی
1-3-2- فرآیند داده کاوی
1-3-3-قابلیت های داده کاوی
1-3-4-چه نوع داده هایی مورد کاوش قرار می گیرند؟
1-4- وظایف داده کاوی
1-1-4-کلاس بندی
1-4-2- مراحل یک الگوریتم کلاس بندی
1-4-3-انواع روش های کلاس بندی
1-4-3-1- درخت تصمیم
1-4-3-1-1- کشف تقسیمات
1-4-3-1-2- دسته بندی با درخت تصمیم
1-4-3-1-3-انواع درخت های تصمیم
1-4-3-1-4- نحوه ی هرس کردن درخت
1-4-3-2- نزدیکترین همسایگی K
1-4-3-3-بیزی
1-4-3-3-1 تئوری بیز
1-4-3-3-2 -دسته بندی ساده بیزی
1-4-3-4- الگوریتم های ژنتیک در فصل دو با آن آشنا می شویم
1-4-3-5-شبکه های عصبی
1-4-4- ارزیابی روش های کلاس بندی
-2-4-1پیش بینی
1-4-3-انواع روش های پیش بینی
1-4-3-1- رگرسیون
1-4-3-1 -1- رگرسیون خطی
1-4-3-1-2-رگرسیون منطقی
1-4-3- خوشه بندی
1-4-3-1- تعریف فرآیند خوشه بندی
1-4-3-2-کیفیت خوشه بندی
1-4-3-3-روش ها و الگوریتم های خوشه بندی
1-4-3-3-1-روش های سلسله مراتبی
1-4-3-3-1-1- الگوریتم های سلسله مراتبی
1-4-3-3-1-1-1-الگوریتم خوشه بندی single-linkage
1-4-3-3-2-الگوریتم های تفکیک
1-4-3-3-3-روش های متکی برچگالی
1-4-3-3-4-روش های متکی بر گرید
1-4-3-3-5-روش های متکی بر مدل
1-4-4- تخمین
1-4-4-1- درخت تصمیم
1-4-4-2- شبکه عصبی
1-4-5-سری های زمانی
1-5-کاربردهای داده کاوی
1-6-قوانین انجمنی
1-6-1-کاوش قوانین انجمنی
1-6-2-اصول کاوش قوانین انجمنی
1-6-3-اصول استقرا در کاوش قوانین انجمنی
1-6-4-الگوریتم Apriori
1-7-متن کاوی
1-7-1- مقدمه
1-7-2- فرآیند متن کاوی
1-7-3- کاربردهای متن کاوی
1-7-3-1- جستجو و بازیابی
1-7-3-2-گروه بندی و طبقه بندی داده
1-7-3-3-خلاصه سازی
1-7-3-4- روابط میان مفاهیم
1-7-3-5- یافتن و تحلیل ترند ها
1-7-3-5- برچسب زدن نحوی (POS)
1-6-2-7-ایجاد تزاروس و آنتولوژی به صورت اتوماتیک
1-8-تصویر کاوی
1-9- وب کاوی
فصل دوم: الگوریتم ژنتیک
1-2-مقدمه
2-2-اصول الگوریتم ژنتیک
2-2-1-کد گذاری
2-2-1-1-روش های کد گذاری
2-2-1-1-1-کدگذاری دودویی
2-2-1-1-2-کدگذاری مقادیر
2-2-1-1-3-کدگذاری درختی
2-2-2- ارزیابی
2-2-3-انتخاب
2-2-3-1-انتخاب گردونه دوار
2-2-3-2-انتخاب رتبه ای
2-2-3-3-انتخاب حالت استوار
2-2-3-4-نخبه گزینی
2-2-4-عملگرهای تغییر
2-2-4-1-عملگر Crossover
2-2-4-2-عملگر جهش ژنتیکی
2-2-4-3-احتمالCrossover و جهش
2-2-5-کدبرداری
2-2-6-دیگر پارامترها
2-4-مزایای الگوریتم های ژنتیک
2-5- محدودیت های الگوریتم های ژنتیک
2-6-چند نمونه از کاربرد های الگوریتم های ژنتیک
2-6-1-یک مثال ساده
فصل سوم: شبکه های عصبی
3-1-چرا از شبکه های عصبی استفاده می کنیم؟
3-2-سلول عصبی
3-3-نحوه عملکرد مغز
3-4-مدل ریاضی نرون
3-5-آموزش شبکه های عصبی
3-6-کاربرد های شبکه های عصبی
فصل چهارم: محاسبات نرم
4-1-مقدمه
4-2-محاسبات نرمچیست؟
4-2-1-رابطه
4-2-2-مجموعه های فازی
4-2-2-1-توابع عضویت
4-2-2-2- عملیات اصلی
4-2-3-نقش مجموعه ­های فازی در داده کاوی
4-2-3-1- خوشه بندی
4-2-3-2- خلاصه­ سازی داده­ها
4-2-3-3- تصویر کاوی
4-2-4- الگوریتم ژنتیک
4-2-5-نقش الگوریتم ژنتیک در داده کاوی
4-2-5-1- رگرسیون
4-2-5-2-قوانین انجمنی
4-3-بحث و نتیجه گیری
فصل پنجم: ابزارهای داده کاوی
5-1- نحوه انتخاب ابزارداده کاوی
5-2-1-ابزار SPSS-Clemantine
5-2-3-ابزار KXEN
5-2-4-مدل Insightful
5-2-5-مدل Affinium
5-3- چگونه می توان بهترین ابزار را انتخاب کرد؟
5-4-ابزار های داده کاوی که در 2007 استفاده شده است
5-5-داده کاوی با sqlserver 2005
5-5-1-اتصال به سرورازمنوی
5-5-2- ایجاد Data source
5-5-3- ایجاد Data source view
5-5-4- ایجاد Mining structures
5-5-5- Microsoft association rule
5-5-6- Algorithm cluster
5-5-7- Neural network
5-5-8-Modle naive-bayes
5-5-9-Microsoft Tree Viewer
5-5-10-Microsoft-Loistic-Regression
5-5-11-Microsoft-Linear-Regression
فصل ششم: نتایج داده کاوی با SQL SERVER2005 روی بانک اطلاعاتی دانشگاه آزاد قوچان
•1-6-نتایج Data Mining With Sql Server 2005 روی بانک اطلاعاتی دانشگاه آزاد قوچان
1-6-1-Microsoft association rule
1-6-2- Algorithm cluster
1-6-3- Neural network
1-6-4- Modle naive-bayes
1-6-5-Microsoft Tree Viewer
7-1-نتیجه گیری
منابع و ماخذ

جهت دانلود از فایل مارکت کلیک کنید
نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد